CNAF ‘ 2016
Nov 09-10, 2016 | Science City, Guangzhou, China
Event Description
● Latest advances in non-coding RNA research
● Transforming nucleic acids technologies
● Nucleic acids based therapeutics
● Nucleic acids based diagnostics and biomarkers
Agenda
Day 1 Wednesday, November 09 |
||
08:45-08:55 | Opening | Organizers |
08:55-09:00 | Chair | Mikiko SIOMI, PhD |
09:00-09:45 | Keynote | Ada YONATH, PhD, Professor, Weizmann Institute of Science, Israel Nobel Prize in Chemistry 2009 Title: Combating resistance to antibacterial and anti-parasite ribosomal antibiotics? |
09:45-10:15 | Chuan HE, PhD, Professor, University of Chicago, USA Title: New sequencing technology to map DNA epigenetic modifications |
|
10:15-10:45 | Tea Break | |
10:45-11:15 | Erik SONTHEIMER, Professor, University of Massachusetts Medical School Title: Genetic Interference and Genome Editing by Neisseria meningitidis Cas9 |
|
11:15-11:45 | Jin-Soo KIM, PhD, Director, Institute for Basic Science, South Korea Title: CRISPR RNA-guided Genome Editing in Human Stem Cells, Animals, and Plants |
|
11:45-12:00 | Technology | TBD Title: |
12:00-13:30 | Lunch | |
13:30-13:35 | Chair | Muthiah MANOHARAN, PhD |
13:35-14:20 | Keynote | Howard CHANG, MD, PhD, Professor, Stanford University, US Title: Genome Regulation by Long Noncoding RNAs |
14:20-14:50 | Judy LIEBERMAN, MD, PhD, Professor, Harvard Medical School, USA Title: The Silent Treatment: Targeted gene knockdown |
|
14:50-15:20 | Tea Break | |
15:20-15:50 | Troels KOCH, PhD, VP and Head of Research,Roche, Denmark / Switzerland Title: New perspectives in LNA therapeutics |
|
15:50-16:20 | Jian-Sheng SUN, PhD, HDR, Professor, Muséum National d’Histoire Naturelle, France Title: Signal interfering DNA (siDNA): from an original concept to a promising a first-in-class DNA repair inhibitor against advanced stage cancer in patients |
|
16:20-16:50 | Mark EDBROOKE, PhD, Director, AstraZeneca, UK Title: Therapeutic nucleic acids including antisense oligonucleotides – significant progress towards a viable drug platform for tackling intractable targets in oncology |
|
17:00-17:30 | After-Hours Social | |
Day 2 Thursday, November 10 |
||
08:55 – 09:00 | Chair | Elizabeth TRAN, PhD |
09:00-09:45 | Keynote | Craig C. Mello, PhD, Professor, University of Massachusetts, 2006 Nobel Prize Winner, USA Title: RNA-guided inheritance |
09:45-10:15 | Mikiko SIOMI, PhD, Professor, the University of Tokyo, Japan Title: PIWI-interacting RNAs in animals |
|
10:15-10:45 | Tea Break | |
10:45-11:15 | Robert HOLT, PhD, Professor, University of British Columbia, Canada Title: Towards personalized T cell receptor therapeutics: Interrogating the T cell repertoire |
|
11:15-11:45 | Muthiah MANOHARAN, PhD, Senior Vice President, Alnylam Pharmaceuticals, USA Title: RNAi Therapeutics in Human Disease using GalNAc-siRNA Conjugates: How sweet it is to work with sugars |
|
11:45-12:00 | Technology | TBD Title: |
12:00-13:30 | Lunch | |
13:30-13:35 | Chair | Mark EDBROOKE, PhD |
13:35-14:20 | Keynote | Stanley CROOKE, MD, PhD, Founder, CEO and Chairman of the Board lonis Pharmaceuticals, USA Title: Antisense Technology: Past, Present, Future |
14:20-14:50 | Yi-Tao YU, PhD, Professor, University of Rochester, USA Title: RNA-guided RNA Modifications |
|
14:50-15:20 | Tea Break | |
15:20-15:50 | Elizabeth TRAN, PhD, Associate Professor,Purdue University, USA Title: Long Non-Coding RNAs Regulate Gene Expression Through Formation Of RNA-DNA Hybrids |
|
15:50-16:20 | Jan Gorodkin, PhD, Professor,University of Copenhagen, Denmark Title: Computational analysis of RNA structure and interactions in genomic sequence |
|
16:20-16:50 | Ekkehard LEBERER, PhD, Professor, Senior Director, Sanofi, Germany Title: MicroRNA therapeutics for targeting the pathways of human disease |
|
16:50-17:00 | Closing | Craig C. Mello, PhD, Professor, University of Massachusetts, 2006 Nobel Prize Winner, USA |
Sponsors & Media
Silver
Bronze
Exhibitors
Media
Speakers
Howard CHANG, MD, PhD
Professor, Stanford University, USA
Howard Hughes Medical Institute
Dr. Chang’s honors include the Paul Marks Prize for Cancer Research, Judson Daland Prize of the American Philosophical Society, Howard Hughes Medical Institute Early Career Scientist, the Vilcek Prize for Creative Promise, Alfred Marchionini Research Prize, American Cancer Society Research Scholar Award, Damon Runyon Scholar Award, and elected membership to the American Society for Clinical Investigation. His work was honored by the journal Cell as a Landmark paper over the last 40 years and by Science as “Insight of the decade”.
Presentation Title
Summary
The discovery of extensive transcription of long noncoding RNAs (lncRNAs) provide an important new perspective on the centrality of RNA in gene regulation. I will discuss genome-scale strategies to discover and characterize lncRNAs. An emerging theme from multiple model systems is that LncRNAs form extensive networks of ribonucleoprotein (RNP) complexes with numerous chromatin regulators, and target these enzymatic activities to appropriate locations in the genome. Consistent with this notion, long noncoding RNAs can function as modular scaffolds to specify higher order organization in RNP complexes and in chromatin states. The importance of these modes of regulation is underscored by the newly recognized roles of long RNAs in human diseases.
Stanley CROOKE, MD, PhD
Founder, CEO and Chairman of the Board
Ionis Pharmaceuticals, USA
Dr. Crooke is one of the pioneers, most experienced scientists and knowledgeable experts in the oligonucleotide therapeutics field. He established and for more than 20 years supervised drug discovery and development platform, resulting in growing number (currently nearly 30) of therapeutic programs with diverse indications, including cardiovascular and metabolic diseases, inflammation and cancer, severe and rare disorders. Many of the programs are now been developed by leading biopharmaceutical companies, such as AstraZeneca, Biogen Idec, GlaxoSmithKline, Pfizer, Sanofi, Teva, and advanced to phase 2 and phase 3 clinical trials. In January of 2013, an oligonucleotide inhibitor of apolipoprotein B-100 (Mipomersen, Kynamro), discovered and initially developed by Dr. Crooke’s team, was approved by the United States Food and Drug Administration for treatment of familial hypercholesterolemia. Throughout all the years with Ionis Pharmaceuticals, Dr. Crooke also continued contributing to the basics of oligonucleotide science, authoring more than 500 research articles and patents, and editing more than 20 books.
Dr. Crooke received his BS in Pharmacy from Butler University in 1966, PhD and MD at Baylor College of Medicine in 1971 and 1974, correspondingly. Earlier in his career, Dr. Crooke helped create the anticancer program at Bristol-Myers (now Bristol-Myers Squibb), and then led Research and Development at SmithKline Beckman (now GlaxoSmithKline). In 1989, he co-founded Ionis Pharmaceuticals, where he now serves as Executive Chairman and Chief Executive Officer. Dr. Crooke held professor positions at Baylor College of Medicine, University of Pennsylvania Medical School, University of California San Diego, and is currently a Member of the San Diego State University BioScience Center Scientific Advisory Board.
For his contribution to life sciences, Dr. Crooke received a number of awards and honors, including the Lifetime Achievement Award from Scrip, the Director of the Year Award from the Corporate Directors Forum, the Distinguished Scientist Award from the American Chemical Society, the Helix Award for the most important innovation in biotechnology by the Biotechnology Industry Organization, the Ernst and Young Entrepreneur of the Year Award, as well as Distinguished Alumnus at Baylor College of Medicine and at Butler University. In 2006, Nature Publishing Group listed him as decade’s one of the most remarkable and influential personalities in biotechnology.
Additional information about Dr. Crooke can be found in the following sites:
http://www.ionispharma.com/about/management/
http://ir.ionispharma.com/phoenix.zhtml?c=222170&p=irol-govBio&ID=189311
Presentation Title
Summary
Mark EDBROOKE, PhD
Senior Principal Scientist, Oncology iMed, AstraZeneca, Cambridge, UK
Presentation Title
Therapeutic nucleic acids including antisense oligonucleotides – significant progress towards a viable drug platform for tackling intractable targets in oncology.
Summary
Jan GORODKIN, PhD
Professor, University of Copenhagen
Director, Center for Non-Coding RNA in
Technology and Health, Denmark
Presentation Title
Summary
Chuan HE, PhD
Professor, University of Chicago, USA
Howard Hughes Medical Institute
Chuan He is the John T. Wilson Distinguished Service Professor in the Department of Chemistry, Director of the Institute for Biophysical Dynamics at the University of Chicago, and an Investigator of the Howard Hughes Medical Institute. He is also a Cheung Kong Professor and Director of Synthetic Functional Biomolecules Center (SFBC) at Peking University in China. His recent research concerns reversible RNA and DNA methylation in biological regulation. Chuan He’s laboratory has spearheaded development of enabling technologies to study the biology of 5-hydroxymethylcytosine (5hmC) in mammalian genomes. His laboratory also discovered the reversible methylation of N6-methyladenosine (m6A) in human messenger RNA (mRNA) in 2011.
Presentation Title
Summary
Cytosine methylation (5mC) is a well-established epigenetic mechanism essential for genomic imprinting, X chromosome inactivation, silencing of retrotransposons, and lineage-specific expression of many developmental regulatory genes. This epigenetic mark is installed and maintained by DNA methyltransfeases (DNMTs), and has been recently shown to be oxidized to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) by the Ten-eleven- translocation (TET) family of protein dioxygenases. In humans and mice, 5hmC is found in most cell types and tissues, with the abundance ranging from less than 0.1% to 0.4% of all cytosines. By contrast, the abundance of 5fC and 5caC is very low to non-detectable. We have developed several methods that allow selective detection and sequencing of 5hmC, 5fC, and 5caC with limited genomic materials. Our results indicate genome-wide dynamic methylation/demethylation play critical roles in mammalian gene expression regulation. The presence of 5hmC in promoters, gene bodies, and enhancers of specific loci often associates with gene activation and reflects chromatin state changes. Sensitive detection of 5hmC will therefore offer the best means to interrogate and monitor cell transformation and gene expression changes in future disease diagnosis and prognosis.
Robert HOLT, PhD
Professor, University of British Columbia, Canada
Professor, Simon Fraser University, Canada
Scientist, British Columbia Cancer Agency, Canada
Rob Holt received his PhD in Pharmacology from the University of Alberta, Canada, in 1998. After a postdoctoral fellowship in molecular evolution at the State University of New York, Dr. Holt joined the company Celera Genomics in Rockville, Maryland where he served on Craig Venter’s team as the Scientific Operations Manager for initial sequencing of the human genome. Since 2003 Dr. Holt has been a Senior Scientist at the British Columbia Cancer Agency (BCCA), where he is Co-director of the BCCA Immunotherapy Program and Co-director of the Genome Canada Science & Technology Innovation Centre. Dr. Holt is recognized for his leadership role in decoding some of the first model organism genomes and pathogen genomes and, more recently, for developing next-generation sequencing methods for interrogating the genetics of the adaptive immune system. He has served as a scientific advisor to the NIH Human Microbiome Project and discoveries by his research group have linked new infectious agents to cancer risk. His current research directions are focused on cancer genomics, T cell engineering, and immune interventions in cancer. He has published over 130 scientific papers that have received >49,000 citations.
Presentation Title
Summary
Jin-Soo KIM, PhD
Professor, Seoul National University
Director ,Center for Genome Engineering,
Institute for Basic Science and Department of Chemistry, South Korea
– Scientific interests and expertise
Genome engineering via programmable nucleases including the CRISPR-Cas system
1) Genome editing in plants, animals, and cultured human cells including iPS/ES cells
2) Engineered nuclease-mediated gene and cell therapy
3) Functional genomics using genome-scale libraries of programmable nucleases
– Received degrees (including places and years)
1987, BS, Dept. of Chemistry, Seoul National University
1989, MS, Dept. of Chemistry, Seoul National University
1994, PhD, Dept. of Biochemistry, University of Wisconsin-Madison
– Current position(s) and role(s) in affiliated organizations
1994-1997, Research Associate, Howard Hughes Medical Institute/MIT
1997-1999, Principal Investigator, Samsung Biomedical Research Institute
1999-2005, CEO and CSO, ToolGen, Inc.
2005-present, Assistant/Associate/Full Professor, Seoul National University
2014-present, Director, Institute for Basic Science (IBS)
Home pages: http://cge.ibs.re.kr/html/cge_en and http://gel.snu.ac.kr
Presentation Title
CRISPR RNA-guided Genome Editing in Human Stem Cells, Animals, and Plants
Summary
Genome editing that allows targeted mutagenesis in cells and organisms is broadly useful in biology, biotechnology, and medicine. We have developed ZFNs, TALENs, and Cas9/Cpf1 nucleases to modify chromosomal DNA in a targeted manner. In particular, we used purified Cas9/Cpf1 proteins rather than plasmids to correct large chromosomal inversions in the factor VIII gene that cause hemophilia A in patient-derived iPSCs or to modify diverse genes in animals and plants. The resulting cells and organisms contained small indels at target sites, which are indistinguishable from naturally-occurring variations, possibly bypassing regulatory requirements associated with use of recombinant DNA.
Despite broad interest in RNA-guided genome editing, Cas9 and Cpf1 are limited by off-target mutations. We developed nuclease-digested whole genome sequencing (Digenome-seq) to profile genome-wide specificities of Cas9 and Cpf1 nucleases in an unbiased manner. Digenome-seq captured nuclease cleavage sites at single nucleotide resolution and identified off-target sites at which indels were induced with frequencies below 0.1%. We also showed that these off-target effects could be avoided by using purified Cas9/Cpf1 ribonucleoproteins (RNPs) and modified guide RNAs. Digenome-seq is a robust, sensitive, unbiased, and cost-effective (< USD 1,500) method for profiling genome-wide off-target effects of programmable nucleases.
Troels KOCH, PhD
VP and Head of Research, RNA Therapeutics
Roche, Denmark / Switzerland
Dr. Troels Koch (TK) is Ph.D. in bio-organic chemistry and has worked in the area of nucleic acid chemistry and biology for more than 15 years. TK is co-founder of several Biotech companies of which Exiqon A/S and Santaris Pharma A/S are most commonly known. He is presently Vice President of Research & CTO in Santaris Pharma A/S with main responsibilities to further build on the fundamental understanding of the chemical and biological properties of LNA, refining the LNA antisense drug discovery process, and establishing a drug pipeline on RNA antagonists targeting both mRNA and microRNA. Collectively this work and associated IP has been a driver behind the four major partner deals that Santaris has entered over the past years. During his academic and biotech career TK has gained experience in managing R & D activities, intellectual property, quality systems, regulatory affairs, antisense drug substance/product manufacturing, and nucleic acid bio-organic chemistry. TK is the author of about 70 peer reviewed scientific papers and inventor of about 25 base patents. He is a frequently invited speaker at international conferences, and he has accepted more than 70 invitations in the past decade.
Presentation Title
New perspectives in LNA therapeutics
Summary
Ekkehard LEBERER, Ph.D., Professor of Biochemistry
Senior Director of R&D Alliance Management, Sanofi, Germany
Scientific Managing Director of COMPACT Consortium, Innovative Medicine Initiative, Belgium
Dr. Leberer received his Ph.D. in Biology at the University of Konstanz, Germany (1986). He conducted post-doctoral training in molecular biology at the Banting and Best Institute of the University of Toronto, Canada, and then became a Professor of Biochemistry at the University of Konstanz, Germany (1992). He is currently responsible for R&D Alliance Management at Sanofi, and is the Scientific Managing Director of the Innovative Medicine Initiative COMPACT Consortium on the delivery of biopharmaceuticals across biological barriers and cellular membranes (www.compact-research.org).
Since joining Hoechst Marion Roussel in 1998, Dr. Leberer carried out various managing roles in this company, Sanofi’s predecessor companies and Sanofi itself, including responsibilities in functional genomics, biological sciences and external innovation for oligonucleotide-based therapeutics. He has also served as Head of Biotechnology Germany and a member of the Scientific Review Committee of Aventis Pharma Germany.
Prior to joining pharmaceutical industry, Dr. Leberer served as Senior Research Officer in genetics and genomics at the Biotechnology Research Institute, National Research Council of Canada, Montreal. His research has focused on the molecular mechanisms of signal transduction and the role of signalling molecules in human diseases. He is the principal discoverer of the p21 activated protein kinase (PAK) family of cell signalling proteins and of novel virulence-inducing genes in pathogenic fungi. He is co-author of more than 60 publications in prestigious peer-reviewed journals including Nature and Science.
Presentation Title
MicroRNA therapeutics for targeting the pathways of human disease
Summary
Judy LIEBERMAN, MD, PhD
Cellular and Molecular Medicine Program, Boston Children’s Hospital and Department of
Pediatrics, Harvard Medical School, Boston MA USA
Judy Lieberman holds a Chair in Cellular and Molecular Medicine at Boston Children’s Hospital, is Professor of Pediatrics at Harvard Medical School and is Chair of the Executive Committee of Immunology at Harvard Medical School. She earned a Ph.D. in physics from Rockefeller University and worked as a theoretical physicist at the Institute for Advanced Study in Princeton and Fermilab, received an M.D. from Harvard and MIT, did a postdoctoral fellowship in immunology in the Eisen laboratory in the Cancer Center at MIT and worked as a hematologist/oncologist at Tufts Medical Center. She has received numerous awards for her research on AIDS vaccines, immunology and cancer. She is a member of the American Academy of Arts and Sciences.
The Lieberman laboratory has been in the forefront of developing RNAi-based therapeutics and using RNAi for genome-wide screening. They have developed strategies for cell-targeted RNAi to treat viral infection, immune disease and cancer. They also investigate the role of microRNAs in regulating cell differentiation and cancer. The Lieberman laboratory also studies cytotoxic T lymphocytes and their role in immune protection from infection and cancer. They study the molecular pathways used by killer lymphocytes to induce programmed cell death of both mammalian cells and microbes, especially those activated by cytotoxic granule proteases, called granzymes, and immune pore-forming proteins.
Presentation Title
The Silent Treatment: Targeted gene knockdown
Summary
Effective therapeutic strategies for in vivo siRNA delivery to knockdown genesin cells outside the liver are needed to harness RNA interference for treating most diseases. Here we describe two flexible platforms for targeted delivery that use RNA aptamers or antibodies for selective cell uptake in vivo and gene knockdown.
Muthiah MANOHARAN, PhD
Senior Vice President, Drug Discovery, Alnylam Pharmaceuticals, USA
Board Director, Oligonucleotide Therapeutics Society
Dr. Muthiah Manoharan serves as Senior Vice President of Innovation Chemistry at Alnylam Pharmaceuticals, Cambridge, Massachusetts, USA. Dr. Manoharan joined Alnylam in 2003. He built the chemistry group at Alnylam and pioneered the discovery of GalNAc conjugated siRNAs for RNA interference (RNAi) based human therapeutics. He was the former Executive Director of Medicinal Chemistry at Isis Pharmaceuticals, Inc., a leading biotechnology company focused on antisense oligonucleotide-based therapeutics where he had a12-year tenure. With a distinguished career as a world-leading nucleic acid and bioconjugate chemist, Dr. Manoharan is an author of nearly 200 publications and over 300 abstracts, as well as the inventor of over 200 issued U.S. patents. Prior to Isis Pharmaceuticals, He earned his Ph.D. in chemistry at the University of North Carolina-Chapel Hill and conducted post-doctoral work at Yale University and the University of Maryland. He was the recipient of the M. L. Wolfrom award of the ACS Carbohydrate Chemistry Division in 2007.
Presentation Title
RNAi Therapeutics in Human Disease using GalNAc-siRNA Conjugates: How sweet it is to work with sugars
Summary
Craig C. MELLO, PhD
Professor, University of Massachusetts
Howard Hughes Medical Institute, USA
Nobel Prize in Physiology or Medicine (2006)
Dr. Mello’s lab uses the nematode C. elegans as a model system to study embryogenesis and gene silencing. His collaborative work with Dr. Andrew Fire led to the discovery of RNA interference (RNAi), for which they shared the 2006 Nobel Prize in Physiology or Medicine. Together they showed that when C. elegans is exposed to double-stranded ribonucleic acid (dsRNA), a molecule that mimics a signature of viral infection, the worm mounts a sequence-specific silencing reaction that interferes with the expression of cognate cellular RNAs. Using readily produced short synthetic dsRNAs, researchers can now silence any gene inorganisms as diverse as rice and humans. RNAi allows researchers to rapidly “knock out” the expression of specific genes and, thus, to define thebiological functions of those genes. RNAi also provides a potential therapeutic avenue to silence genes that cause or contribute to diseases.
Dr. Mello received his BS degree in Biochemistry from Brown University in 1982, and PhD from Harvard University in 1990. From 1990 to 1994, he conducted postdoctoral research at the Fred Hutchinson Cancer Research Center in Seattle, WA. Now Dr. Mello is an Investigator of the Howard Hughes Medical Institute, the Blais University Chair in Molecular Medicine and Co-director of the RNA Therapeutics Institute at the University of Massachusetts Medical School.
Besides the Nobel Prize, Dr. Mello’s work was recognized with numerous awards and honors, including the National Academy of Sciences Molecular Biology Award (2003), the Wiley Prize in Biomedical Sciences from Rockefeller University (2003), Brandeis University’s Lewis S. Rosnstiel Award for Distinguished Work in Medical Research (2005), the Gairdner Foundation International Award (2005), the Massry Prize (2005), the Paul Ehrlich and Ludwig Darmstaedter Award (2006), the Dr. Paul Janssen Award for Biomedical Research (2006), the Hope Funds Award of Excellence in Basic Research (2008). He is a member of the National Academy of Sciences, the American Academy of Arts and Sciences, and the American Philosophical Society.
Additional information about Dr. Mello can be found in the following sites:
http://www.hhmi.org/scientists/craig-c-mello
http://profiles.umassmed.edu/profiles/ProfileDetails.aspx?From=SE&Person=1009
http://www.nobelprize.org/nobel_prizes/medicine/laureates/2006/mello-bio.html
Presentation Title
RNA-guided inheritance
Summary
Mikiko SIOMI, PhD
Professor, Department of BiologicalSciences, Graduate School of Science,
The University of Tokyo, Japan
Mikiko C. Siomi earned her Ph.D. in Agricultural Chemistry from Kyoto University, Japan in 1994, and then did post-doctoral studies with Prof. Gideon Dreyfuss, HHMI/University of Pennsylvania School of Medicine. Later, Dr. Siomi earned another Ph.D. in Medical Science from the University of Tokushima, Japan in 2003. Dr. Siomi started a joint laboratory with Prof. Haruhiko Siomi in the University of Tokushima, Japan in 1999 for elucidating the function of FMRP and the mechanism of RNAi using the Drosophila system. The laboratory discovered that Ago2 protein, the key player of RNAi, interacts with FMRP, an RNA-binding protein that is encoded by the fmr1 gene, the responsible gene for causing Fragile X Mental Retardation. Later, Dr. Siomi focused on elucidating how RNAi mechanistically occurs and the molecular mechanisms of piRNA biogenesis in the germlines. Dr. Siomi started her own laboratory at the University of Tokyo in 2012 (http://www-siomilab.biochem.s.u-tokyo.ac.jp/index.html). Dr. Siomi co-authored numerous research articles, reviews and book chapters, and currently serves as the president of the RNA Society of Japan and the vice-president of the Molecular Biology Society of Japan.
Presentation Title
PIWI-interacting RNAs in animals
Summary
Erik SONTHEIMER, PhD
Professor, RNA Therapeutics Institute
University of Massachusetts Medical School
Worcester, Massachusetts, USA
Erik Sontheimer is Professor in the RNA Therapeutics Institute (RTI) at the University of Massachusetts Medical School. He received his Ph.D. in 1992 from Yale, where he did his thesis work with Joan Steitz on pre-mRNA splicing mechanisms. He was then a Jane Coffin Childs Fund postdoctoral fellow with Joe Piccirilli at the University of Chicago. In 1999, Sontheimer joined the faculty at Northwestern, where he turned his attention to small RNA-based gene regulation in eukaryotes. In 2008 his laboratory also began working on genetic interference in bacteria. Among other advances, they provided the first demonstration that CRISPR RNAs (crRNAs) can target DNA, as well as the first explicit recognition of crRNA’s potential for gene targeting in eukaryotes, pointing the field down the path of RNA-guided genome engineering. He has received an NSF CAREER Award, a New Investigator Award from the Burroughs Wellcome Fund, and the Nestlé Award from the American Society for Microbiology, and he has also been elected to the American Academy of Microbiology. In 2014 he moved to the RTI, where he is continuing his research on the fundamental roles of RNA molecules, and on their uses in biomedical research and medicine. He is a co-founder and Scientific Advisory Board member of Intellia Therapeutics, which is developing Cas9-based genome editing for clinical applications.
Presentation Title
Genetic Interference and Genome Editing by Neisseria meningitidis Cas9
Summary
Jian-Sheng SUN, PhD, HDR
Professor, Muséum National d’Histoire Naturelle
MNHN-CNRS-INSERM, France
Born in Shanghai, after high school, he was sent to France by Chinese government to study theoretical physics. After M.S. degree, he served as assistant professor in the Department of Physics at Fudan University. Later on, he returned to Paris to study nucleic acids, was awarded Ph.D and Habilitation degrees in biophysics at Pierre & Marie Curie University. He also had an entrepreneurial training at HEC business school.
His research in nucleic acids (100+ peer-reviewed publications, 8 patents) led him to co-invent an original concept with Dr. Marie Dutreix at the Institut Curie – “the signal interfering DNA (siDNA)” which jams the recognition and signaling of double strand break (DSB) by using a short dsDNA mimicking a DSB. Acting agnostically at upstream, it can blind DSB repair signaling, thus inhibit all DSB repair pathways causing cancer cell death due to unrepaired DSB, while preserving normal cells.
In 2006, he co-founded DNA Therapeutics, served as Chairman & CEO, managed from scratch to clinical stage this virtually integrated biopharmaceutical company and executed from concept to clinic a 1st-in-class drug development with the help of the experts aggregating skills in early stage drug development, CMC, regulatory affairs and business development. After demonstrating good safety and significant antitumor activity of the 1st– in-class siDNA drug candidate in a phase I/IIa trial in patients with cutaneous metastatic melanoma (presented at the ASCO 2015), the Company was acquired in early 2016 by Onxeo – a public company specializing in the development of innovative oncology therapeutics. After closing, he is back to MNHN, focusing his research on the interplay between DNA damage, cancer and aging.
Prof. Sun received the physical chemistry 1991 award by French Chemical Society, the joint Grand Prize of Life Science 2006 by French Senate, INSERM-Transfert and ESSEC, the Award of Best Innovative Entrepreneur in Health 2008 by French Business Angels investing in health, the Next Gem award of best biotech at Biovision Investor Conference 2013.
Presentation Title
Signal interfering DNA (siDNA): from an original concept to a promising a first-in-class DNA repair inhibitor against advanced stage cancer in patients
Summary
Signal interfering DNA (siDNA) is a novel approach to fully inhibit DNA repair activities, as siDNA jams the recognition and the signaling of the most lethal DNA damage – double strand break (DSB), by using a synthetic short double strand DNA fragment mimicking a DSB lesion. Acting agonistically at upstream of all DSB repair pathways, siDNA can blind DSB signaling that disorganizes DSB repair system and thereby inhibits all DSB repair pathways. Genetic instability and other characteristics of cancer cells make them highly sensitive to the consequence of siDNA-induced DSB repair inhibition as compared to normal cells, and thus provide good safety and high therapeutic index.
This presentation will describe the mechanism of action, preclinical and clinical proofs of concept of siDNA jointly studied by DNA Therapeutics and the team led by Dr. Dutreix at the Institut Curie.
Elizabeth TRAN, PhD
Associate Professor
Purdue University, USA
Elizabeth Tran earned her PhD in biochemistry at North Carolina State University where she developed an in vitro assembly and methylation system for trans acting box C/D snoRNAs. She then pursued postdoctoral training in the laboratory of Dr. Susan Wente at Vanderbilt University, where she identified the role of the RNA helicase Dbp5 in nuclear mRNA export. She joined the faculty at Purdue University in 2009, where she explores the biochemical mechanism and biological function of DEAD-box RNA helicases, a class of enzymes that are required for all aspects of RNA metabolism but whose in vivo roles are yet to be identified. Her laboratory is most well known for studies of the DEAD-box RNA helicase Dbp2 in S. cerevisiae and insights into the roles of long non-coding RNAs (lncRNAs) in gene expression. These insights span the fields of RNA biology, epigenetics, and metabolism. Moreover, the scientific community has highlighted her work for pivotal, paradigm shifting advances in lncRNA biology (Best of JBC 2012, Nature highlight, Science Signaling highlight). Her long-term goal is to understand the connection between RNA structure, gene regulation, and cellular adaptation in relationship to organismal survival and human pathology. In addition to research, Dr. Tran is a strong supporter of the international scientific community and mentoring the next generation of scientists. She is currently serving a two year term as a Director on the Board of the RNA Society, an international organization with ~1000 members worldwide.
Presentation Title
Long Non-Coding RNAs Regulate Gene Expression Through Formation Of RNA-DNA Hybrids
Summary
Ada YONATH, PhD
Professor, Weizmann Institute of Science, Israel
Nobel Prize in Chemistry 2009
Ada Yonath is focusing on protein biosynthesis, on antibiotics hampering it, on pathogenic parasites and on the origin of life. She graduated from the Hebrew University, Jerusalem, and postdocted at Carnegie-Mellon and MIT (USA). In the seventies she joined the Weizmann Institute and established the first structural-biology laboratory in Israel. During 1986-2004 she also headed Max-Planck-Research-Unit for Ribosome Structure in Hamburg. Among others, she is a member of US-National-Academy-of-Sciences; Israel Academy; German Science Academy (Leopoldina); the Pontificia Accademia-delle-Scienze (Vatican). She holds honorary doctorates from the universities of Oslo, NYU, Mount-Sinai, Oxford, Cambridge, Hamburg, Berlin-Technical, Patras, De-La-Salle, Xiamen, Lodz, Strasbiurg. Her awards include the Israel Prize; Louisa-Gross-Horwitz Prize; Linus-Pauling Gold Medal; Wolf-Prize; UNESCO/L’Oreal Award; Albert-Einstein-World-Award for Excellence; Nobel Prize for Chemistry.
Presentation Title
Combating resistance to antibacterial and anti-parasite ribosomal antibiotics?
Summary
Yi-Tao YU, PhD
Professor, University of Rochester School of Medicine and Dentistry, USA
Yi-Tao Yu received his PhD degree in Molecular Biology from Case Western Reserve University in 1994. He was awarded a post-doctoral fellowship from the Damon Runyon Cancer Research Foundation, and did his post-doctoral work (RNA biology) with Joan Steitz at Yale University (HHMI) from 1995 to 1999. He then joined the faculty of the Department of Biochemistry and Biophysics at the University of Rochester in late 1999. He is currently also a member of the Center for RNA Biology and Chair of the RNA Structure and Function Cluster at the University of Rochester. Dr. Yu’s research interests are in the areas of RNA modification, snRNP biogenesis and pre-mRNA splicing. Over the years, he has generated numerous publications and made significant contributions in these areas.
Presentation Title
RNA-guided RNA Modifications
Summary
Nucleic acids science plays a key role in precision medicine, genetic therapy and new solutions for human health. Continuous discovery of new RNA functions and constant emergence of innovative nucleic acids technologies are driving forces for the field and hold enormous promise for the future scientific and technological progress. The China Nucleic Acids Forum (CNAF) led by Nobel Prize winners is an international forum at the forefront of these developments, aims to push forward communications and collaborations in and abroad, and has been successfully held five times since 2013. The CNAF has attracted high-profile speakers, including Nobel Prize winners, to highlight recent advances in nucleic-acid based medicine, scientific discoveries, diagnostics and industrial trends. It has been widely recognized as the premier forum in Asia for advancing nucleic acids research and drug development. The 2019 CNAF will feature 20+ globally prominent experts discussing the latest advances in nucleic acids research and development.
© 2013-16 China Nucleic Acids Forum (CNAF) | 粤ICP备05022931号-2